DevOps at Mingle Analytics

Story and Lessons Learned



Floyd Hilton - Tacoma Software

= Twitter - @fhilton

= LinkedlIn - https://www.linkedin.com/in/floydhilton/

= Emaill - floyd@tacomasoftware.com

= Blog - http://floydhilton.com/



https://www.linkedin.com/in/floydhilton/
mailto:floyd@tacomasoftware.com
http://floydhilton.com/

Background

Mingle Analytics is an industry leader in Medicare reporting

Worked with Mingle from 2014 to 2017

Brought in to help accelerate legacy re-write

Moved from no automation to automated integration and deployment




Architecture Overview

On Premise Azure SAAS

© ©

External Web App

Internal Web Apps Azure Webjobs, Queues CRM
etc

e

IEIEIEIJ ¢

Console Batch Tools VNet
e Build and Deployment Payments

Tools

SQL Server
Multiple Databases
> Monitoring
Lots of logic in stored procs QA Environments




In the Beginning

/ \

.NET Web Develo;\ KTN’ET Tools Developer

SQL Developer Dev, Test, Prod




Have a Reason for DevOps - Problems to Solve

= Painful merging, lost changes

= Quality iIssues

= Long regression test cycle = opportunity cost

= Difficulty tracking down problems

= Painful releases dependent on one key person

= Duplicated efforts and confusion between teams

= Unable to keep up with customer needs




Integration, Deployment and Monitoring Overview

Developer

IT/ Operations

»@

Git on VSTS

=B

R

Team City Build Octopus Deploy

~
@)

Dev, Test, Prod

Monitoring

Slack

stackify ,@J

Stackify Raygun




Source Control




Move from TFVC to Git

Benefits Learnings

* Don’t need VPN for source control = = Training on Git saves time later
more frequent commits = less

N = Understand how it works
merging iIssues

Remotes
= Quick and easy branching

Branching

= Documentation in Git using

Merging and Rebasing
Markdown

Cherry picking

Pull requests




Implement Git Flow Process

Tag Author Vincent Driessen
l I Oﬂo‘wm» hitp /invie.com/archives/323
e Creative Co mmom
master
hotfixes \
release
branches
develop f E,

feature \".".

branches

Time
¢




Implement Git Flow

Benefits Learnings
= Know what code is in production = Need to account for drift between
helps with fixing issues production and the master branch

_ _ (especially the database)
= Hot fixes are as simple as a branch

and a pull request = Need to be diligent with merging
changes between master, release,
= Allows coding on new features to and develop branches
continue while a potential release is
iIn QA = If possible use feature flags and

have one master branch




SQL in Source Control

Benefits

= Found many broken views and
stored procedures

= Facilitated SQL unit testing and
deployment

= Quickly track down errors by
knowing what changed and when

= Added transparency between teams
= All teams doing pull requests

Learnings

Need to account for drift
Importing and fixing takes time
Build times

State of test vs production can cause
unexpected issues

Training and acceptance by all

= Can use even if everyone else does
not




Git Tools and Resources

Sourcetree - https://www.sourcetreeapp.com/

Beyond Compare - https://www.scootersoftware.com/

Tutorials - https://www.atlassian.com/qit/tutorials

Git Flow - https://datasift.qgithub.io/qitflow/IntroducinqGitFlow.html

Git Hosting
= GitHub - https://qgithub.com/

= Team Services - https://www.visualstudio.com/team-services/



https://www.sourcetreeapp.com/
https://www.scootersoftware.com/
https://www.atlassian.com/git/tutorials
https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://github.com/
https://www.visualstudio.com/team-services/

SQL in Source Control Tools and Resources

= Database tools video: https://channel9.msdn.com/Shows/Visual-Studio-
Toolbox/SQL-Server-Data-Tools-for-Visual-Studio

= Red Gate ReadyRoll: https://www.red-gate.com/readyroll/

= DbUp: https://dbup.qgithub.io/



https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/SQL-Server-Data-Tools-for-Visual-Studio
https://www.red-gate.com/readyroll/
https://dbup.github.io/

Continuous Integration




Integration, Deployment and Monitoring Overview

Developer

IT/ Operations

-®

Git on VSTS

~

2

Team City Build

v
-Pe).-

R

Octopus Deploy

!

Monitoring

Slack

wois OB

Stackify Raygun

~
@)

Dev, Test, Prod



Implement Continuous Integration

Benefits Learnings
= Eliminated “Works on my machine” = Cl server updates (Use SAAS if you
can)
= Found issues sooner by running
tests with every push = Broken builds can take up a lot of
_ _ _ time, have a process in place that
= Tagging of builds helped find notifies the team when a build
problems breaks and who broke it

= Building pull requests prior to merge
can help a lot with broken builds

= Team City limits on # of build servers




Implementing Pull Requests

= Using Visual Studio Team Services — Very similar to Git Pull Requests

= Gated
= Related to a user story
= Approved by one other developer
= Must have unit tests

= Code must build, deploy, and tests must pass

* PR notifications go to Slack with @mention

= New PR, acceptance, rejection, build and test failures




Implementing Pull Requests

Benefits Learnings

= Drastically lowered the number of = Easy for PRs to get held up waiting
broken builds for other developers to review

= Improved test coverage * Need to manage how “Picky” the

code reviews are
= Code review on every PR improved
code quality and consistency = Team City build server limitation
slowed process on busy days




Cl Tools and Resources

= Team Services CI - https://www.visualstudio.com/team-services/continuous-
integration/

= Donovan Brown - http://donovanbrown.com/

= TeamCity - https://www.]etbrains.com/teamcity/



https://www.visualstudio.com/team-services/continuous-integration/
http://donovanbrown.com/
https://www.jetbrains.com/teamcity/

Testing




Implementing Unit and Integration Tests

Benefits Learnings

= Find bugs before they are merged = Some code bases are harder to unit
and released test than others

= Cleaner, less coupled code = Writing tests is a skill that takes time

to develop - training

= Enforce unit tests using pull requests




Implementing User Interface Tests

= Used a combination of Selenium and SpecFlow (similar to Cucumber)

= Developers created a custom test framework for the applications and then QA
used Gherkin syntax with SpecFlow to create tests.

= Tests could be run from the CI server but were limited due to available
environments




Implementing User Interface Tests

Benefits Learnings

= Lowered regression test time by = Tests are brittle and difficult to create
automating basic tests and maintain

= Allowed synthetic monitoring of = Would not bother with SpecFlow or
applications in production Gherkin if doing again

= Only use for smoke testing or very
basic regression

= May be the option for legacy
applications that are not written to be
tested




Combined Development and QA

= Involved developers in regression testing
= Used Visual Studio Team Services to script and run manual regression tests

= Easily see testing progress, track issues, and link stories

= Combined QA and Dev groups
= Aligned goals
= Brought transparency

= Reduced duplication of effort




Testing Ratios, Unit vs Integration and Ul
Visual Studio Team Services at Microsoft

90% Ul and Integration 5% Ul and Integration

Combine QA and DEV

Change quality responsibility

10% Unit 95% Unit

12 hour run time 7 min run time
65k unit tests




Testing Tools and Resources

Uncle Bob - http://blog.cleancoder.com/

.NET Rocks, Brian Harry - https://dotnetrocks.com/?show=1496

Video - Slacker with Database Project and Team Services

= Part 1 - https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/SQL-Server-Data-Tools-for-
Visual-Studio

= Part 2 - https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/SOL-Server-Data-Tools-in-
your-DevOps-pipeline

= Part 3 - https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/SQL-Server-Database-Unit-
Testing-In-your-DevOps-pipeline

tSQLLt - http://tsqlt.org/

Slacker - https://github.com/vassilvk/slacker/wiki/Slacker-Tests



http://blog.cleancoder.com/
https://dotnetrocks.com/?show=1496
https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/SQL-Server-Data-Tools-for-Visual-Studio
https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/SQL-Server-Data-Tools-in-your-DevOps-pipeline
https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/SQL-Server-Database-Unit-Testing-in-your-DevOps-pipeline
http://tsqlt.org/
https://github.com/vassilvk/slacker/wiki/Slacker-Tests

Deployment




Automated Deployments

= Started with TFS using msbuild, very limiting
= Moved to Octopus Deploy
= Automated deployments done for every pull request

= Deployed on Prem and in Azure
= Multiple IS Websites and APIs
= Console Apps
= Azure Queues and Webjobs
= Multiple SQL databases

= Allowed configuration of variables by environment

= Notifications of success and failure to Slack




Automated Deployments

Benefits Learnings

= Decreased release times = Variables can get complex fast, think

about ahead of time
= Deployments on every PR means

less surprises when going live = |If applications are coupled, test and

o _ deploy them at the same time
= Scripting of IS and other settings for

more consistent environments = Non SAAS, no auto update, need to

_ keep tool up to date
= Easy deployment to multiple

environments

= Dev not required for deployment




Monitoring




Monitoring

Synthetic (Live) Testing , @
7
— )
Application Level Logging Raygun
Log Aggregation

Server Monitoring - CPU, Memory, Disk <— Logic Monitor




Monitoring

Benefits Learnings
= Wholistic view of all systems = Make sure you have access to your
data

Much easier to find problems

| /. _ = Use Log Levels — Turn on when
Pinpoint performance issues needed

between application and SQL server

_ = Alerts should be real and infrequent
Set thresholds and receive alerts — noise is ignored

Brought together Dev and Ops - Log feature use — 50% features not
used by most users




Monitoring Tools

Stackify - https://stackify.com/

Raygun - https://raygun.com/

Datadog - https://www.datadoghg.com/

Application Insights - https://azure.microsoft.com/en-us/services/application-
Insights

Grafana - https://grafana.com/



https://stackify.com/
https://raygun.com/
https://www.datadoghq.com/
https://azure.microsoft.com/en-us/services/application-insights
https://grafana.com/

Infrastructure

Configuration as code



Infrastructure

* Ansible

« Salt

» Desired State Config
* Azure Automation

* Octopus Deploy

s




Communication




Slack

®

Git
Pull Requests

Developer
Communication
Sharing
Fun

>

VSTS
Story Changes
Assignments

.

Stackify
Error levels, Critical Errors
Performance Warnings

B

Team City Build
Failures

Octopus Deploy
Deployment Failures

#pullrequests
#stories

#builds
#productionissues
#leam

ChatOps?




Communication with Slack

Benefits

Transparency

Ability to collaborate quickly and bring

others in, allowing them to see the
history

One place for all notifications

Great for releases

Learnings

Decide on acceptable response time
Use @mentions and @here

Resist the urge to log everything,
becomes noise

Different channel, different urgency.
tBunds are right away, others can take
ime

No need to keep up with everxthin?,
don’t even try, don't expect others to

Not the place to document decisions




®» B N

Git on VSTS Team City Build Octopus Deploy

Developer Dev, Test, Prod
& Monitor
\¢ L
m "

ing
- o

Stackify Raygun

IT/ Operations

Questions?




