
DevOps at Mingle Analytics
Story and Lessons Learned



Floyd Hilton - Tacoma Software

▪ Twitter - @fhilton

▪ LinkedIn - https://www.linkedin.com/in/floydhilton/

▪ Email - floyd@tacomasoftware.com

▪ Blog - http://floydhilton.com/

https://www.linkedin.com/in/floydhilton/
mailto:floyd@tacomasoftware.com
http://floydhilton.com/


Background

▪ Mingle Analytics is an industry leader in Medicare reporting

▪ Worked with Mingle from 2014 to 2017

▪ Brought in to help accelerate legacy re-write

▪ Moved from no automation to automated integration and deployment



Architecture Overview



In the Beginning



Have a Reason for DevOps - Problems to Solve

▪ Painful merging, lost changes

▪ Quality issues

▪ Long regression test cycle = opportunity cost

▪ Difficulty tracking down problems

▪ Painful releases dependent on one key person

▪ Duplicated efforts and confusion between teams

▪ Unable to keep up with customer needs



Integration, Deployment and Monitoring Overview



Source Control



Move from TFVC to Git

Benefits

▪ Don’t need VPN for source control = 
more frequent commits = less 
merging issues

▪ Quick and easy branching

▪ Documentation in Git using 
Markdown

Learnings

▪ Training on Git saves time later

▪ Understand how it works

▪ Remotes

▪ Branching

▪ Merging and Rebasing

▪ Cherry picking

▪ Pull requests



Implement Git Flow Process



Implement Git Flow

Benefits

▪ Know what code is in production 
helps with fixing issues

▪ Hot fixes are as simple as a branch 
and a pull request

▪ Allows coding on new features to 
continue while a potential release is 
in QA

Learnings

▪ Need to account for drift between 
production and the master branch 
(especially the database)

▪ Need to be diligent with merging 
changes between master, release, 
and develop branches

▪ If possible use feature flags and 
have one master branch



SQL in Source Control

Benefits

▪ Found many broken views and 
stored procedures

▪ Facilitated SQL unit testing and 
deployment

▪ Quickly track down errors by 
knowing what changed and when

▪ Added transparency between teams

▪ All teams doing pull requests

Learnings

▪ Need to account for drift 

▪ Importing and fixing takes time

▪ Build times

▪ State of test vs production can cause 
unexpected issues

▪ Training and acceptance by all

▪ Can use even if everyone else does 
not



Git Tools and Resources

▪ Sourcetree - https://www.sourcetreeapp.com/

▪ Beyond Compare - https://www.scootersoftware.com/

▪ Tutorials - https://www.atlassian.com/git/tutorials

▪ Git Flow - https://datasift.github.io/gitflow/IntroducingGitFlow.html

▪ Git Hosting

▪ GitHub - https://github.com/

▪ Team Services - https://www.visualstudio.com/team-services/

https://www.sourcetreeapp.com/
https://www.scootersoftware.com/
https://www.atlassian.com/git/tutorials
https://datasift.github.io/gitflow/IntroducingGitFlow.html
https://github.com/
https://www.visualstudio.com/team-services/


SQL in Source Control Tools and Resources

▪ Database tools video: https://channel9.msdn.com/Shows/Visual-Studio-
Toolbox/SQL-Server-Data-Tools-for-Visual-Studio

▪ Red Gate ReadyRoll: https://www.red-gate.com/readyroll/

▪ DbUp: https://dbup.github.io/

https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/SQL-Server-Data-Tools-for-Visual-Studio
https://www.red-gate.com/readyroll/
https://dbup.github.io/


Continuous Integration



Integration, Deployment and Monitoring Overview



Implement Continuous Integration

Benefits

▪ Eliminated “Works on my machine”

▪ Found issues sooner by running 
tests with every push

▪ Tagging of builds helped find 
problems

Learnings

▪ CI server updates (Use SAAS if you 
can)

▪ Broken builds can take up a lot of 
time, have a process in place that 
notifies the team when a build 
breaks and who broke it

▪ Building pull requests prior to merge 
can help a lot with broken builds

▪ Team City limits on # of build servers



Implementing Pull Requests

▪ Using Visual Studio Team Services – Very similar to Git Pull Requests

▪ Gated

▪ Related to a user story

▪ Approved by one other developer

▪ Must have unit tests

▪ Code must build, deploy, and tests must pass

▪ PR notifications go to Slack with @mention

▪ New PR, acceptance, rejection, build and test failures



Implementing Pull Requests

Benefits

▪ Drastically lowered the number of 
broken builds

▪ Improved test coverage

▪ Code review on every PR improved 
code quality and consistency

Learnings

▪ Easy for PRs to get held up waiting 
for other developers to review

▪ Need to manage how “Picky” the 
code reviews are

▪ Team City build server limitation 
slowed process on busy days



CI Tools and Resources

▪ Team Services CI - https://www.visualstudio.com/team-services/continuous-
integration/

▪ Donovan Brown - http://donovanbrown.com/

▪ TeamCity - https://www.jetbrains.com/teamcity/

https://www.visualstudio.com/team-services/continuous-integration/
http://donovanbrown.com/
https://www.jetbrains.com/teamcity/


Testing



Implementing Unit and Integration Tests

Benefits

▪ Find bugs before they are merged 
and released

▪ Cleaner, less coupled code

Learnings

▪ Some code bases are harder to unit 
test than others

▪ Writing tests is a skill that takes time 
to develop - training

▪ Enforce unit tests using pull requests



Implementing User Interface Tests

▪ Used a combination of Selenium and SpecFlow (similar to Cucumber)

▪ Developers created a custom test framework for the applications and then QA 
used Gherkin syntax with SpecFlow to create tests.

▪ Tests could be run from the CI server but were limited due to available 
environments 



Implementing User Interface Tests

Benefits

▪ Lowered regression test time by 
automating basic tests

▪ Allowed synthetic monitoring of 
applications in production

Learnings

▪ Tests are brittle and difficult to create 
and maintain

▪ Would not bother with SpecFlow or 
Gherkin if doing again

▪ Only use for smoke testing or very 
basic regression

▪ May be the option for legacy 
applications that are not written to be 
tested



Combined Development and QA

▪ Involved developers in regression testing

▪ Used Visual Studio Team Services to script and run manual regression tests

▪ Easily see testing progress, track issues, and link stories

▪ Combined QA and Dev groups

▪ Aligned goals

▪ Brought transparency

▪ Reduced duplication of effort



Testing Ratios, Unit vs Integration and UI
Visual Studio Team Services at Microsoft

90% UI and Integration

10% Unit

12 hour run time

Combine QA and DEV

95% Unit

5% UI and Integration

7 min run time

65k unit tests

Change quality responsibility



Testing Tools and Resources

▪ Uncle Bob - http://blog.cleancoder.com/

▪ .NET Rocks, Brian Harry - https://dotnetrocks.com/?show=1496

▪ Video - Slacker with Database Project and Team Services

▪ Part 1 - https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/SQL-Server-Data-Tools-for-
Visual-Studio

▪ Part 2 - https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/SQL-Server-Data-Tools-in-
your-DevOps-pipeline

▪ Part 3 - https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/SQL-Server-Database-Unit-
Testing-in-your-DevOps-pipeline

▪ tSQLt - http://tsqlt.org/

▪ Slacker - https://github.com/vassilvk/slacker/wiki/Slacker-Tests

http://blog.cleancoder.com/
https://dotnetrocks.com/?show=1496
https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/SQL-Server-Data-Tools-for-Visual-Studio
https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/SQL-Server-Data-Tools-in-your-DevOps-pipeline
https://channel9.msdn.com/Shows/Visual-Studio-Toolbox/SQL-Server-Database-Unit-Testing-in-your-DevOps-pipeline
http://tsqlt.org/
https://github.com/vassilvk/slacker/wiki/Slacker-Tests


Deployment



Automated Deployments

▪ Started with TFS using msbuild, very limiting

▪ Moved to Octopus Deploy

▪ Automated deployments done for every pull request

▪ Deployed on Prem and in Azure

▪ Multiple IIS Websites and APIs

▪ Console Apps

▪ Azure Queues and Webjobs

▪ Multiple SQL databases

▪ Allowed configuration of variables by environment

▪ Notifications of success and failure to Slack



Automated Deployments

Benefits

▪ Decreased release times

▪ Deployments on every PR means 
less surprises when going live

▪ Scripting of IIS and other settings for 
more consistent environments

▪ Easy deployment to multiple 
environments

▪ Dev not required for deployment

Learnings

▪ Variables can get complex fast, think 
about ahead of time 

▪ If applications are coupled, test and 
deploy them at the same time

▪ Non SAAS, no auto update, need to 
keep tool up to date



Monitoring



Raygun

Selenium

Synthetic (Live) Testing

Custom Metrics

User Monitoring

Application Level Logging

Log Aggregation

Logic MonitorServer Monitoring - CPU, Memory, Disk

Monitoring



Monitoring

Benefits

▪ Wholistic view of all systems 

▪ Much easier to find problems 

▪ Pinpoint performance issues 
between application and SQL server

▪ Set thresholds and receive alerts

▪ Brought together Dev and Ops

Learnings

▪ Make sure you have access to your 
data

▪ Use Log Levels – Turn on when 
needed

▪ Alerts should be real and infrequent 
– noise is ignored

▪ Log feature use – 50% features not 
used by most users



Monitoring Tools

▪ Stackify - https://stackify.com/

▪ Raygun - https://raygun.com/

▪ Datadog - https://www.datadoghq.com/

▪ Application Insights - https://azure.microsoft.com/en-us/services/application-
insights

▪ Grafana - https://grafana.com/

https://stackify.com/
https://raygun.com/
https://www.datadoghq.com/
https://azure.microsoft.com/en-us/services/application-insights
https://grafana.com/


Infrastructure
Configuration as code



Infrastructure

Chef

Puppet

ARM

Docker

• Ansible

• Salt

• Desired State Config

• Azure Automation

• Octopus Deploy



Communication



Slack

• #pullrequests

• #stories

• #builds

• #productionissues

• #team

• ChatOps?



Communication with Slack

Benefits

▪ Transparency

▪ Ability to collaborate quickly and bring 
others in, allowing them to see the 
history

▪ One place for all notifications

▪ Great for releases

Learnings

▪ Decide on acceptable response time

▪ Use @mentions and @here

▪ Resist the urge to log everything, 
becomes noise

▪ Different channel, different urgency. 
Builds are right away, others can take 
time

▪ No need to keep up with everything, 
don’t even try, don’t expect others to

▪ Not the place to document decisions



Questions?


